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The theoretical background and practical procedures for phase determination by the symbolic addition 
method are discussed. Phase determining formulas are presented for centrosymmetric and noncentro- 
symmetric crystals. A probability formula is employed to evaluate the reliability of phase determination 
for centrosymmetric crystals and a formula for the variance is utilized for the same purpose in non- 
centrosymmetric ones. These probability measures play a key role in overcoming the main problems 
involved in carrying out the procedure, namely the nonuniqueness of the internal consistency criterion 
as applied to the phase determining formulas, and questions concerning the proper circumstances for 
assigning symbols. The method is generally applicable to centrosymmetric crystals and has been 
successful in several applications to noncentrosymmetric ones. Some auxiliary phase information is pro- 
bably required to make the symbolic addition procedure a general one for noncentrosymmetric crystals. 

I. Introduction 

During the decade from 1950-60, many structure in- 
vestigations of centrosymmetric crystals were carried 
out employing direct methods of phase determination 
based on algebraic and probability concepts. As a con- 
sequence of this experience, certain rather striking 
general features emerged whose interpretation has led 
to the formulation of a simple and efficient phase deter- 
mination procedure for centrosymmetric crystals. For 
example, it has been observed that a set of relatively 
few properly chosen signs is required to be known ini- 
tially, in order to proceed with the phase determination, 
when probability concepts are made an integral part of 
the procedure. With three-dimensional data, formulas 
employing the very largest normalized structure factor 
magnitudes, in a set of data from the copper sphere of 
scattering, are highly reliable, in good agreement with 
the expectations from probability theory. After the 
phases of the larger normalized structure factors have 
been determined, the atomic positions can be readily 
obtained from Fourier maps calculated from these 
structure factors as coefficients, the so-called E maps 
(Karle, Hauptman, Karle & Wing, 1958). 

These observations were made in the course of car- 
rying out the phase determining procedure of ACA 
Monograph 3 (Hauptman & Karle, 1953). According 
to the monograph, a basic set of signs is first deter- 
mined from probability formulas utilizing the measured 
X-ray intensities, and then this basic set is used in con- 
junction with additional probability formulas to pro- 
ceed with the phase determination. It became apparent 
that a simple and reliable method for phase determina- 
tion would obtain from a revision of the logic of the 
phase determination procedure of the monograph still 
utilizing the probability formulas and concepts. In- 
stead of first determining a basic set of signs and then 
proceeding from this basic set, the phase determining 
procedure can be initiated and carried out in terms 

of a small, properly chosen set of specified signs and 
unknown symbols, the symbolic addition procedure. 
The advantage in employing symbols at the start is 
that it permits the use of X2 (formula 4.1) with the very 
largest structure factor magnitudes immediately, with- 
out the requirement for establishing their signs initially. 
For some of the structure factors of largest magnitude, 
this could be difficult or involve extensive, time-con- 
suming calculations which are now obviated. Ordinari- 
ly, only after the phase determination in terms of the 
symbols has been completed would it be desirable to 
compute some phases from the formulas previously 
used for starting purposes. Other devices are also 
available for distinguishing among the alternative pos- 
sible sets of phases and will be discussed. The first ap- 
plication of symbols for facilitating a procedure for 
sign determination was made by Gillis (1948) who used 
inequalities. 

Although the presently described symbolic addition 
procedure arose as a direct development of the implica- 
tions of ACA Monograph 3, there are several similari- 
ties between the procedure of Zachariasen (1952) and 
the present one as applied to centrosymmetric crystals. 
These include the use of symbols to facilitate the ap- 
plication of the phase determining relations and the 
restriction of attention to the structure factors of larger 
magnitude so that the indications would be more prob- 
ably correct. The present method differs in its manner 
of handling two significant problems which occur in 
the use of symbols with the phase determining formula. 
The first problem is that there is a very great number 
of sets of signs in general which are essentially internal- 
ly consistent with respect to the phase determining ~'2 
relation. The physically correct set is buried somewhere 
among them. The second problem concerns the ques- 
tions of how many symbols to assign and under what 
circumstances. In the symbolic addition procedure 
these problems are overcome by the introduction of 
probability measures developed in ACA Monograph 3. 



850 THE SYMBOLIC A D D I T I O N  P R O C E D U R E  FOR PHASE D E T E R M I N A T I O N  

In the application which Zachariasen (1952) made to 
the structure determination of metaboric acid, both 
problems were overcome by using initially auxiliary 
phase information from an inequality relation. The in- 
equality afforded a firm basis for proceeding with the 
sign determination and served as a vehicle for intro- 
ducing the unknown symbols employed for facilitating 
the procedure. 

It has long been recognized that the main phase de- 
termining formula, X2, does not usually lead to the 
physically correct solution in a unique fashion with- 
out the introduction of auxiliary phase information. 
In the course of the years various algebraic and pro- 
bability methods have been developed to provide this 
information. The present method is based on the re- 
cognition that with the proper use of probability in- 
formation, the number of ambiguous sets of signs can, 
in general, be kept to a very small number, with the 
assurance that the desired physical answer be contained 
among the small number of possibilities generated by 
the procedure. Another special feature of the present 
method is the manner in which the specification of 
symbols is made in a step-by-step fashion contingent 
upon the requirements for proceeding with the deter- 
mination and the reliabilities indicated by the pro- 
bability measures. 

Other investigators have suggested procedures to 
facilitate finding the physically correct set of signs. 
For example, Rumanova (1954) developed a systemat- 
ic method for applying the relation for sign determina- 
tion by making use of symmetry relations in the cen- 
trosymmetric space groups. She has used it in connec- 
tion with Zachariasen's (1952) procedure and has car- 
ried out several successful structure determinations. 
Cochran & Douglas (1955) introduced a so-called Z 
function based on probability considerations in order 
to choose the correct set of signs from among a very 
large number of sets generated by a computer. Al- 
though successful in several instances the limitation 
of this manner of using probability information arises 
from the fact that the probability measure in the form 
of the 2' function was applied to an entire set of signs, 
rather than to individual terms in a step-by-step fashion. 
This led to an insensitivity to the correct set and the 
need to consider a great many possibilities. A proce- 
dure for decreasing the number of possibilities which 
required consideration was suggested by Woolfson 
(1957), but this number still remained quite large.* 

The new procedure has been applied to numerous 
structure investigations of centrosymmetric crystals 
and has been found to be quite effective and simple to 
apply, e.g. cyclohexaglycyl (Karle & Karle, 1963), 
jamine (Karle & Karle, 1964a), hydrolyzed cocarboxyl- 
ase (Karle & Britts, 1966), and other examples pub- 
lished after 1963 in Acta Crystallographica, Zeitschrift 
fiir Kristallographie and the Journal of the American 

* For further details concerning the development and ap- 
plication of procedures for phase determination, the reader is 
referred to the review article by Karle (1964). 

Chemical Society. In each case the phase determina- 
tion was carried out by hand in a relatively short time. 
The question naturally arises whether there exists a 
straightforward generalization of the procedure which 
would have practical significance for noncentrosym- 
metric crystals. A generalization has been found and 
has been applied to the study of several noncentro- 
symmetric crystals, for example L-arginine dihydrate 
(Karle & Karle, 1964a), and panamine (Karle & 
Karle, 1966). It involves the use of a new formula 
which again has probable validity for the phases 
associated with the larger normalized structure factor 
magnitudes. However, the number of ambiguous sets 
of phases generated for noncentrosymmetric crys- 
tals is often rather large, so that the procedure, for 
general applicability, appears to require some auxiliary 
phase information. 

The main phase determining formulas for both cen- 
trosymmetric and noncentrosymmetric crystals to be 
discussed here involve the addition of particular com- 
binations of phases. They may therefore be termed 
addition formulas. Since the procedure is generally 
facilitated by the use of a few unknown symbols, we 
have termed this procedure the symbolic addition 
procedure. 

The purpose of this paper is to describe the con- 
ceptual basis of the method in terms of the main phase 
determining formulas, to present a detailed description 
of the phase determining procedures and to discuss the 
features of these procedures on the basis of our ex- 
perience to date. The main phase determining formulas 
are listed in § 4. 

2. Background 

As is well known, a set of inequalities which proved 
useful for sign determination was derived by Harker 
& Kasper (1948). It was shown (Karle & Hauptman, 
1950) that these inequalities arose from the positivity 
criterion, namely that the electron density distribution 
had to be a non-negative function*. On the basis of 
this positivity criterion, Karle & Hauptman (1950) 
derived a complete set of inequalities which are valid 
for all the space groups. The inequalities could be 
written as a sequence of relations of successively in- 
creasing complexity. The first three are, 

Fooo > O, (2.1) 
IFhkd < F00o (2.2) 

and 

I Fhlkll'Fh2k2t2 I Fhl+h2, kl+k2, /1+/2 . . . . . .  F0~0 . . . . . . . .  

Fooo F~,~;6 ½ Fooo F~2~272 ½ 

< ~-F-~.'-k' ('--- F°°° - I-- ~ Fh~k-21~- F0-°°. -- l- (2.3) 
Fooo 

* C.H. MacGillavry independently observed that Harker & 
Kasper implicitly assumed the non-negativity of the density 
distribution in their derivation. 
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The first two inequalities state that F000 is non-negative 
and that the magnitude of any structure factor is less 
than or equal to F000. For the case of crystals having a 
small number of atoms, the third relation (2.3) can 
provide a basis for phase determination in both cen- 
trosymmetric and noncentrosymmetric crystals. To 
understand this we rewrite (2.3) in the form 

where 
IFh - - 6 l  <_ r , (2.4) 

J = J(h, k) = F h --k Fk / F000, (2.5) 

I Fooo Fh--k ½1 Fooo Fk "~ 
r . . . . . .  -F-h---.-.k- F°-°-°-. Fk Fooo 

Fooo 
(2.6) 

and h=hx+h2  and k=h2. Equation (2.4) implies that 
the complex structure factor Fh is bounded by a circle 
in the complex plane whose center is 6 and whose 
radius is r (Fig. 1). If the magnitude of F~ is known, it 
will be bounded by the dotted line between the points 
A and B. The larger the values of ]Fk[ and ]F h -k] ,  the 
smaller will be r, and the closer will F h be to the com- 
plex number 6. Since the vector k can be varied ar- 
bitrarily, many different relations of the type (2.3) and 
(2.4) would exist. From the foregoing discussion, one 
would expect that F h would be proportional to an 
average over the various O(h, k) involving the larger 
IF[ as k is varied, 

F h oC(FkFh_k) k . (2.7) 

This follows since for the larger IFI, the quantities 
6(h, k) would cluster in a particular region of the com- 
plex plane and F h would be located within this cluster. 
It could be described geometrically by several inter- 
locking circles drawn as in Fig. 1, each with a new J 
and a new r. It also follows from the previous discus- 
sion and Fig. 1 that if we consider the larger structure 
factor magnitudes and write 

Im 

---- A 

Fig. 1. Construction showing how Fh is limited by the inequality 
(2.4). Fh is contained within a circle of radius r whose center 
is 6. When the value of IFhl is given as indicated, Fh lies 
anywhere along the broken line within the circle, i.e. between 
the points A and B. 

F h =lFhl exp (/{Oh) , (2.8) 

we may conclude that approximately 

(ih ~'~ ((ilk "+" (ih--k)k , (2.9) 

where (ik + (ih--k is associated with the complex number 
J(h, k) through the relation 

6(h, k)--16(h, k)l exp [i((ik +(ih-k)]" (2.10) 

For the special case of centrosymmetric crystals, it 
is seen how the Sayre (1952) relation follows from (2.7), 
namely the sign of F h would almost certainly be the 
same as that of (Fk Fb_k) k if large structure factor mag- 
nitudes were involved. It should be noted, as pointed 
out by Gillis (1948, p. 179), that the predominant phase 
indication given by an inequality is probably the cor- 
rect one, even though the structure factor magnitudes 
involved are not quite large enough to give a definitive 
result. 

The sign relationship for centrosymmetric crystals 
and some further implications for noncentrosymmetric 
ones are contained in relation (20) of Harker & Kasper 
(1948), although the general phase expression (2.3) and 
its implication (2.7) is not. The interpretation of the in- 
equality expressions such as (2.3) in terms of (2.4) for 
the largest structure factors was presented in the paper 
by Karle & Hauptman (1950), and thus the phase re- 
lation (2.7) was recognized and understood from this 
work. Sayre (1952) and Zachariasen (1952) made a 
valuable contribution in emphasizing the significance 
and potential of (2.7) for sign determination in cen- 
trosymmetric crystals. In his paper, Sayre (1952, p. 64) 
pointed out the parallel between his results and the 
earlier work mentioned above. 

Examination of formulas such as (2.7) and (2.9) in- 
dicates that it is necessary to have a basic set of phases 
in order to use them for obtaining additional phases. 
A basic set may be composed of those phases which 
can be specified in order to fix the origin in the crystal, 
and some additional phases denoted by symbols, cor- 
responding to the largest structure factor magnitudes. 
If it is not necessary to assign many symbols, (2.9) 
would be immediately useful as a general phase deter- 
mining relation. It will be seen that if certain rules are 
followed for choosing a basic set and unknown sym- 
bols are introduced in a stepwise fashion, paying close 
attention to associated probability measures, very few 
symbols are, in fact, required for centrosymmetric crys- 
tals. This appears also to be true for many noncentro- 
symmetric crystals, but it is not possible to generalize 
at this time. 

As the complexity of crystals increases, the quantity 
r in (2.4) becomes disproportionately large, until in 
general the inequality (2.4) by itself imposes no re- 
striction on the phase of F h. The arguments in this 
section must then be augmented by a more detailed 
analysis involving algebraic considerations and prob- 
ability theory. When this is done it is found that the 
phase determining formulas such as (2.9) remain valid 
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and it is also possible to obtain additional useful phase 
determining relations. 

The phase relations and the implications drawn 
therefrom are strengthened by dividing the Fourier co- 
efficients by a function of the atomic scattering factors 
which effectively concentrates the scattering material 
about  the atomic coordinates to form the unitary 
structure factor, U, (Harker  & Kasper, 1948), or the 
normalized structure factor, E h (5.1). 

Probabil i ty formulas for evaluating the reliability of 
a sign determination for centrosymmetric  crystals were 
derived by Haup tman  & Karle (1953), using the joint 
probabil i ty distribution. The results were obtained in 
the form of a series. For the present applications we 
prefer the hyperbolic tangent  form obtained by Woolf- 
son (1954). The relation between the two forms has 
been shown by Karle (1964, p.73). Addit ional  alge- 
braic and probabili ty considerations applicable to non- 
centrosymmetric  crystals will be discussed in the next 
section. 

3. Analysis 

3.1 Algebraic considerations 
We define the quasi-normalized structure factor 

(Karle & Hauptman,  1959): 
N 

gk =a{  1/2 .S Zj exp (2rcik • r j ) ,  (3.1) 
j - I  

and the quasi-normalized structure factor for the 
squared structure 

N 
~'h =ag l/z X Z~ exp (2rcih • r j ) ,  (3.2) 

j = l  

where Zj is the atomic number  of t h e j t h  atom, having 
coordinates represented by the vector rj in a unit cell 
containing N atoms, and 

N 
a , =  S Z~'. (3.3) 

j -  ! 
Then, 

N 
gk ~h-  k = 32-1 X Z~ exp (2rri h • rj) 

j--i  
N 

+ ai -l Z" X Zj Zj, exp {Dr/[k" r~ + ( h - k ) "  rj,]}, (3.4) 
j:l=j" 

I 

and if we average over all values of k, the average of 
the double sum becomes zero and we obtain, using 
(3.2), 

N 
(Ot~k ~ h _ k ) k :  0"21 ,~' Z~ exp (2rrih.  r j )=a l /2  ai-to~ h . 

i=l (3.5) 

Rearranging, we have the general result from (3.5), 

~ ; = 0 "  2 0"41/2(OX'Vk OX'~h_k) k . (3 .6)  

This expression can also be derived by means of the 
joint probabili ty distribution. For  equal atoms ~'~ coin- 
cides with Eh, cr2a41/z equals N 1/2 and (3.6) becomes 
in this special case, 

8 .  = N 1 / 2 ( ~  k o'~'h_k) k . (3.7) 

Formula  (3.7), which is exact for equal atoms was 
derived originally for centrosymmetric  crystals by 
Hughes (1953) in terms of unitary structure factors, 

N 
U.=Fh / F J). When the atoms are equal, Hughes 

j= l  

(1953) also noted that in this case formula (3.7) is 
valid for noncentrosymmetr ic  crystals. An expression 
similar to (3.6), in terms of unitary structure factors, 
has been obtained by Cochran (1955) from probabili ty 
considerations. Karle & Hauptman (1956) have found 
a relation for Ch instead Of~h by probabili ty methods, 

'(fh ~O'3/20"3 -1 (c'ffk :~h--k)k ' (3 .8)  

which also may be compared to (3.6). They wrote (3.8) 
in a form which has proven to be quite useful in ap- 
plication. If we write d'h= I~.l cos (o.+i I~hl sin (oh, (3.8) 
becomes, 

Id:h[ COS (oh ~ crz3/2°'31 (l~k ~h--k] cos ((okl- (oh-k))k , (3.9) 

Ighl sin ~0h~33/2O3~ ( l¢  k efh_kl sin ((ok+(o,--k))k, (3.10) 

and dividing (3.10) by (3.9) gives 

<]~k ~h-kl sin ((ok+ (oh-k) )k  
tan (oh ~ ([d-kdh_k[ COS((ok+(oh_k) )k  " (3.11) 

For the larger structure factor magnitudes Ig I, (3.8) 
leads to a new approximate formula which plays a 
significant role in the initial stages of phase determina- 
tion. Equation (3.8)* can be rewritten, 

1 ~,~ O'32/20"3 - 1 (IOffh l~k~X'~h_ kl exp [i( -- (Oh + (Ok + (oh--k)]>k • 
(3.12) 

It has been shown by means of probabil i ty argu- 
ments, to be discussed below, that  for the largest [~] 
values, (oh--(ok--(oh--k is distributed about  zero and gen- 
erally, assumes small values. We then write 

1 "~'~2"~ t'-'O'3/26-3 ~ <1~.-l~°kd'h- kl [COS ( -- (Oh + (ok -{- (oh--k) 

+ i  sin ( -- ~h -+- (ok -~- (oh_ k)] >kr (3.13) 

where kr represents the restricted values of k for which 
the corresponding I~kl and I~ . -d  values are large and 

C ,~ 0-2 3/203 ( l ~ h  l~k  ~)'h_kl COS ( -- (,Oh -+- (]gk "~- (oh--k))kr 1 

/ /0(K) \ (3.14) ~'~ O'2 3/20"3 (] ~t'~fh IO~Vk ~¢~Jh-kl)krl \ II(K) / k, 

from use of (3.37) and (3.38) and the assumption that  
the ]J'l values vary over a restricted range. Restricting 
attention to the imaginary part  of (3.13) gives 

(I,~:k~h_kl sin (--(oh-~-(ok-~-(oh--k))kr z 0 .  (3.15) 

* We work with the approximate equation (3.8) rather than 
the exact (3.6) since it defines the phase for $'h, rather than for 
d"h which is associated with the squared structure. Actually 
the ~°h and d°'h of large magnitude do not differ greatly from 
each other, even when atoms of considerably different atomic 
number are present in a crystal. 
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We take the first term in the Taylor expansion of the 
sine function since its argument is generally small and 
obtain, 

(l#kd~h-- kl ( -- Oh -t- (ilk -~- Oh- -k )~k  r 

_ p - I  Z" [Og°k~'~h_k[ (--Oh--{-(/gk-'[-(/gh_k)~,'~'~0 , (3.16) 
kr 

where there are p terms designated by kr. Equation 
(3.16) may be rewritten to give a new phase determin- 
ing formula, 

Z I~kdh_kl  ((/7 k "~ Oh--k) 
0h ~ k~ 

....... Z" [Ek~fh ~kl . . . . . .  (3.17) 
kr 

in which the Oh are defined as linear functions of other 
phases, specifically the weighted averages of Ok+Oh--k 
associated with the largest I~1 values. If all the I~1 are 
roughly of the same order of magnitude, we obtain 

(/)h Z (Ok -~- (/gh-k)kr (3.18) 

in agreement with (2.9) which was suggested by an in- 
terpretation of the inequality (2.4). 

3.2 Probability considerations 
It is now of interest to consider the probability 

distribution for Oh--¢k--Oh-k and to relate it to the 
previous assumption that this linear combination is 
distributed about zero with values generally close to 
zero. Cochran (1955) (employing somewhat different 
notation) found that the probability distribution for 
Oh, given a fixed Ok '+ -0h_k  and the accompanying Ig[ 
values, is given by 

Pk(Oh) "~ [2nI0(K)]-1 exp [tc cos (Oh -- Ok -- Oh--k)], (3.19) 

where I0 is a Bessel function (Watson, 1945, p. 77) and 

X = K(h, k) -- 2o'3o'2 -3/2 I#h#k~h_k[ . (3.20) 

The joint probability distribution for 0h, Ok and Oh-k 
found by Karle & Hauptman [1956, equation (5.39)] 
is in agreement with this result. The first two terms 
of the distribution, which were explicitly calculated, 
are to be compared with the first two terms of the ex- 
ponential expansion of (3.19). Clearly, (3.19) has a 
maximum when Oh = Ok + Oh--k o r  Oh --  (ilk --  Oh--k = 0,  and 
the larger the value of K, i.e. the larger the I~:l values, 
the steeper will this maximum be. Cochran (1955) has 
studied the probability distribution (3.19) in consider- 
able detail and has computed a table which facilitates 
the estimation of its sharpness. 

It is possible to use (3.19) as a basis for an alter- 
native derivation of the phase determining formulas 
(3.11), (3.17) and (3.18) from probability rather than 
algebraic considerations. Given several fixed 'addition 
pairs' Ok+ Oh-I,, we may multiply the individual proba- 
bility distributions to obtain the approximate form, 

P(0h)  = ] ]  Pk(Oh) ~ A exp [Z K(h, k) c o s  (Oh -- Ok --  Oh--k)] ,  
kr kr (3.21) 

where A is a normalizing constant and, again, the sum- 
mation over kr involves the larger I~l values. The 

maximum of the probability distribution, P(Oh), is ob- 
tained as usual by the condition, 

dP(0h)  ,,~ 
- A exp [S it(h, k) cos (Oh -- Ok -- 0h--k)] 

0h ~" kr 

× Z K(h, k) sin (Oh- 0k-- Oh--k) = 0 .  (3.22) 
kr 

This gives with the aid of (3.20), 

Z I~k~h_k[ sin (Oh-Ok--Oh--k) = 0 .  (3.23) 
kr 

Since (3.23) divided by the number of contributors to 
the sum is the same as (3.15), it follows that from the 
point of view of probability theory the new phase de- 
termining formulas (3.17) and (3.18) appear as approx- 
imate conditions for locating the main maximum of the 
probability distribution given by (3.21). Equation 
(3.23) may also be rewritten in the form, 

s i n  Oh ~ v - I # k ~ h _ k l  COS (Ok "~- 0h--k)  
kr 

-- COS 0h Z I~k~h_kl sin (Ok -~- Oh--k) = 0 ,  (3.24) 
kr 

which becomes, by rearrangement, the more accurate 
equation (3.11), except that here, of course, the range 
of k has been restricted. 

3.3 Variance 
The probability distribution (3.21) can be used to 

determine the variance of Oh for a given set of (Ok+ 
Oh--k) and •. Equation (3.21) may be rewritten in the 
form 

P(Oh) = [2~ZI0(~)] -~ exp [a cos (Oh--fl)], (3.25) 

where 

= {[Z" to(h, k) c o s  ((ilk -~- Oh--k)] 2 
kr 

+ [Z K(h, k) sin (Ok + 0h-k)] z} * (3.26) 
kr 

and 

Z ]~kdh_kl  sin (Ok-~-0h__k) 
fl = tan-  1 _kr (3.27) 

Z I5Ok#h_kl COS (Ok + 0h--k) " 
kr 

The form of (3.25) and the definition (3.27) clarify the 
result obtained in (3.23) and (3.24). We wish to find 
from (3.25), the variance, 

V =  ( ( O h - - ( O h ) )  2)  = ( 0 2 ) - -  ( O h )  2 . (3.28) 

We consider first 

(~0~) = [2nlo(~)] -~ exp[~cos(oh--/?)ldOh, (3.29) 

which becomes on substituting x = Oh-/?, 

Q0~) = [2nlo(~)1-1 (x+f l )2exp(ecosx)dx .  (3.30) 

The squared term in the integrand of (3.30) may be 
written x2+2xf l+ (Oh) 2 since fl= (Oh)" If we note that 
x makes the integrand of (3.30) odd and then refer to 
definition (3.28), we find that 
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i 
x 

V= [2rd0(c0] -1 x 2 exp (e cos x) dx. (3.31) 

From the theory of Bessel functions (Watson, 1945 
pp. 22 and 77) we have, 

oo 

exp (~ cos x) = I0(~)+ 2 Z I2n(e) cos 2nx 
n = l  

oo 
+ 2 27 /2n+,(~) cos (2n+ 1)x. (3.32) 

n = 0  

The substitution of (3.32) into (3.31) gives, on integrat- 
ing, 

g 2  co 
V =  - -  +[I0(~)1-1 X Izn(a) 

3 n--I r/2 
co 

+4[I0(~)1-1 X .I2n+1(~) (3.33) 
,=o (2n+1)  2" 

The infinite series converge quite rapidly for the 
values of ~ ordinarily encountered in practice. Expres- 
sion (3.33) gives the variance of ~% for a fixed set of 
((pk+(flh_k) and x. 

3.4 Expected values 
We can obtain the expected values of cos (~Ok+ ~Oh_ k) 

and sin (~Pk + ~%-k) for a fixed value of h- from the prob- 
ability distribution (3.19). We have, 

f 
7[ 

<cos ( 0k +  0h_O> = [ 2 - / # : ) ] - '  cos ( 0k+ 0h_O 
--It 

x exp [k: cos (~0h--~0k--q~h_k)] d(cPk+tPh_k) • (3.34) 

By means of the expansion (3.32) (where for a single 
contr ibutor  ~ is replaced by x) and orthogonali ty 
properties which permit a contr ibution to (3 .34)only  
from the n = 0  term of the last summation in (3.32), 
we obtain for a fixed x, 

I,(x) (3.35) 
<COS ((~k "{- ~ h - - k ) >  = IO(K. ) COS (flh " 

where 11 is a Bessel function (Watson, 1945, p.77). In 
a similar fashion we obtain also, 

(sin (cp k +~Ph-k)) -- I1(~:) sin ~Ph" (3.36) 
10(tc) 

In practice there would not be many addit ion pairs, 
~%+~%-k for fixed x and fixed h; and we would there- 
fore have to allow for some variat ion in x as k varies 
over a restricted set of values. We are therefore led to 
the approximate  formulas 

/ l°0c) \ (cos (~0 k +(flh--k)>kr (3.37) cos 

/ Io (x ) \  (sin (q,k + ~h_k)>k" (3.38) sin ¢Ph ~ \ / 1 - ~ j - / k ,  

The ratio of (3.38) to (3.37) gives a formula for 
tan ~Ph which may be compared to the more accurate 
(3.11). The sine and cosine terms from (3.37) and 
(3.38) are unweighted. If, however, the range of I~l 
values covered by kr is not large, the weighting does 
not play an important  role. 

4. P h a s e  d e t e r m i n i n g  f o r m u l a s  

The main formulas to be used in the phase determina- 
tion are listed here. 

Centrosymmetric crystals 

SEh ,~s X EkEh_k, (4.1) 
kr 

where s means 'sign of'. This formula was termed 272 
in the monograph of Hauptman  & Karle (1953), and 
is the probabili ty equivalent of the inequality (2.3). The 
associated probabili ty function, P+(h), which deter- 
mines the probabili ty that  the sign of E h be positive 
was given in the monograph,  but  it is most convenient- 
ly applied in the form given by Woolfson (1954) and 
Cochran & Woolfson (1955), 

P+(h)~½+½ tanh a3a~3nlEhl Z EkEh_ k . (4.2) 
k 

Noncentrosymmetric crystals 

(/gh ~'~ < ~ k  + ~ h - - k > k r  ' (4.3) 

,SI EkEh-kl ((Pk + q)h-k) 
~ kr (4 .4)  

(Ph '~ S IEkEh_kl ' 
kr 

Z IEkEh_kl sin ((pk-~- (Ph__k) 
k . (4.5) 

tan q ~  -Z IEkEn_kl c o s  ( ~ k - ' ~ h _ k )  
k 

Either (4.3) or (4.4) may be used in the beginning 
stages of the phase determination.  The symbol kr im- 
plies that  k ranges only over those vectors associated 
with large IE[ values. Formula  (4.3) is the same as 
(3.18). The average in (4.3) is to be taken in a sense 
of maximum clustering, i.e. a minimum deviation of 
the contributions of individual addition pairs, 09k+ 

>20 

I ; 
2 4 

3.oL 

' ' ," ,'2 ,'4 ,'~ 6 8 
tl 

Fig. 2. Curve showing the variance, V (in square radians), of a 
phase angle determined from known values of other phase 
angles. The variance is expressed as a function of ct defined 
in (3.26). 
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~Ph--k, from the average value. Since all ¢p are kept in a 
range - n  < q~ < n, the attainment of maximum clus- 
tering requires the addition of 0, + 2n or - 2 n  to each 
addition pair. This matter complicates the application 
of (4.3) to noncentrosymmetric crystals and will be 
discussed further below. In analogy to the probability 
formula (4.2) for centrosymmetric crystals, we employ 
the variance given by (3.33) and plotted as a function 
of e in Fig.2 in order to evaluate the reliability of 
contributors in (4.3). 

Formulas (4.4) and (4.5) are analogous to (3.17) and 
(3.11), respectively, except that the quasi-normalized 
structure factor, ~h, has been replaced by the nor- 
malized structure factor, Eh. It is preferable to use the 
latter, since the E h are corrected when h belongs to a 
subgroup affected by space group extinctions [see § 5, 
I(a)]. Under those circumstances the O~h might be rather 
large in magnitude and could make an unwarrantably 
large contribution to formulas (3.17) and (3.11). 

5. Procedures for phase determniation 

I. Centrosymmetric crystals 
(a). Preparation of normalized structure factor 
magnitudes 

Normalized structure factor magnitudes, I Ehl, are 
defined by 

IF~l  2 
l e h l  2 . . . . . . . . . . . . . . . .  , N (5.1) 

¢ S fj2(h) 
y=l 

where IFhl is the structure factor magnitude, J~ is the 
atomic scattering factor for the j th atom in a unit cell 
containing N atoms, and ¢ is a number which corrects 
for space group extinctions*. 

A data reduction program, written in the FOR- 
TRAN language, which processes the measured inten- 
sity data, makes all the necessary corrections automat- 
ically and produces the normalized structure factor 
magnitudes, IEh], has been written by H. Norment and 
revised by S. Brenner, both of this laboratory. For the 
proper application of the phase determining formulas, 
all reflections contained within the experimental sphere 
of reflection are considered available for use, not mere- 
ly the independent reflections. 

* For  the case that  none of  the indices is zero, the quasi- 
normal ized s t ructure  factors,  ¢ ,  are the same as the normal ized  
s t ructure  factors,  E. When  there are systemat ic  absences  due 
to space group  extinct ions a m o n g  reflections for which at least 
one of  the indices is zero, the quasi -normal ized s t ructure  fac- 
tors have to be rescaled to equal  the normal ized s t ructure  fac- 
tors. If, for example,  half  o f  the reflections are extinct ions 
within a part icular  set, such as the hOl reflections in space 
group P21/c, then the appropr ia te  quasi -normal ized s t ructure  
factors  must  be divided by 2 ~, i.e. ~fh0d2 ~ = Eh0z. The rule is 
1 g [ 2 ( 1 - - q ) = l E I  2, where q is the fract ion of  reflections in the 
set which are space group extinctions. We are considering here 
only primitive unit cells. Our  choice of  primitive cell for 
convent ional ly  centered cells is given in previous papers  
( H a u p t m a n  & Karle, 1959; Karle & H a u p t m a n ,  1961). 

(b) Listings of the data 
After the IEhl have been obtained, it is convenient to 

divide them among the eight subgroups defined by the 
parity of the h, k and l indices. In each of these sub- 
groups the IEhl are listed in the order of decreasing 
magnitude. For the space groups of higher symmetry, a 
further subdivision of the subgroups may be desirable. 

Another useful listing consists of all the combina- 
tions of k and h - k  for a given h to be used with for- 
mula (4.1). It is called a Sz listing and a FORTRAN 
program for carrying this out has been prepared by 
H. Norment and revised by P. Gum and S. Brenner. The 
list is restricted since we only consider those indices 
associated with the IEI of sufficiently large value. This 
value is, of course, arbitrary and is dictated by experi- 
ence and the size of the unit cell of the crystal being 
studied. However, it is often set at IEI-> 1.5. Along 
with each pair, k and h - k ,  the value Of the function 
0"3V0"2 3/2 IEhEkEh_kl is listed. This facilitates the evalua- 
tion of the probability formula (4.2). 

(c) Specification of origin, assignment of unknown sym- 
bols and phase determination 

Origin specification is made by assigning phases ar- 
bitrarily to a properly chosen set of IEh[ (Hauptman 
& Karle 1953, 1959). In making the phase assignments 
the largest suitable IEhl should be used. The choice will 
be partly determined by the extent to which a particular 
h enters into the combinations required by formula 
(4.1) as noted from the Sz listing. Occasionally a struc- 
ture factor of large magnitude does not form many 
combinations. 

After the phase specifications which determine the 
origin have been made, some additional symbols are 
assigned in a step-by-step fashion as needed to other 
large IEh[ which appear to enter into many combina- 
tions as required by formula (4.1). In this way it is 
possible to proceed with the phase determination by 
hand and obtain the phases of many of the remaining 
large IEhl in terms of the phase specifications and the 
unknown symbols. 

(d) Phase determination 
In proceeding by hand with (4.1) the following steps 

have generally been followed: 
I. A listing is made of five to ten of the largest IEI 

in each of the parity subgroups mentioned in (b). This 
short list not only facilitates the specifications but it 
also restricts the initial stages of the phase determina- 
tion to the very largest IEI values. 

2. The signs which specify the origin and one un- 
known symbol are assigned, bearing in mind that the 
particular reflections chosen should enter into many 
combinations such as are required by (4.1). 

3. Equation (4.1) is employed to define as many 
signs of the largest IEhl as possible in terms of the 
specified ones and others that have been newly deter- 
mined. It is important to take advantage of the fact 
that when the sign of a reflection is known, the signs 
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of all the symmetry related reflections are known. In 
the higher space groups this greatly facilitates the phase 
determining procedure. Often, the probability formula 
(4.2) will indicate a high probability for the initial com- 
binations. As the determination proceeds and the 
smaller IEI values enter, the probability estimates from 
(4.2) should be carefully considered. A working rule 
is that a phase should not be accepted if P+(h)< 0.97 
as given by (4.2), whether there is only one term in the 
sum over k or several. On rare occasions in the triclinic 
system it has been found necessary to relax this rule 
slightly in order to proceed. In the initial stages it is 
also recommended that in all but the triclinic system 
combinations of h, k and h -  k, in which all three vectors 
are one- or two-dimensional, should be avoided. An 
automatic computer program for phase determination 
should take this type of decision process into account. 

4. The next five to ten largest [El in each subgroup 
are added and eventually full use is made of the listing 
of all the combinations of k and h - k  for a given h 
found in (b). 

5. Additional unknown symbols are added as re- 
quired in order to determine the signs of the majority 
of the larger IEI in terms of the specified signs and un- 
known symbols. A new symbol should be assigned if 
the phase indications by (4.1) for some subset of re- 
flections are either too weak (P+(h)<0.97) or absent 
altogether. Sometimes no symbols need be specified. 
This is more likely to happen in space groups of 
higher symmetry and when heavy atoms are present. 
In space group P1, if there is no heavy atom at the 
origin, at least one symbol must be assigned and, in 
the case of only one assignment, it must be negative. 
We have not found it necessary to assign more than 
six symbols, and they would reduce to four or less at 
the completion of the phase determination. 

If there have been p unknown symbols assigned, at 
most 2p Fourier maps need be computed. In actual 
practice, there are many ways in which this number 
may be reduced, although, with the fast computers 
now available, this reduction is generally more a con- 
venience than a necessity. The following is a list of 
ways in which reduction may be effected: 

(i) Often, as the phase determination employing 
(4.1) proceeds, certain of the unknown symbols are 
found to be definable in terms of others. Relationships 
among the symbols should be accepted only with great 
care and generally at the end of the procedure. Num- 
erous indications of the relationship should occur. If 
they occur only rarely or only among E values of 
moderate magnitude, the relationship is to be con- 
sidered as only probable. 

(ii) Phase determining formulas which define phases 
in terms of the structure factor magnitudes may be 
employed, e.g. the Z'1 formula (Hauptman & Karle, 
1953) or B3,0 and /3,o (Karle & Hauptman, 1959). 
Examples may be found in the studies of l-cyclo- 
hexenyl-l-cyclobutenedione (Karle, Britts & Brenner, 
1964) and allylthiourea (Dragonette & Katie, 1965). 

(iii) The absence of a peak at the origin would elim- 
inate a combination of values for the symbols for which 
the signs were predominantly plus. Likewise a pre- 
dominantly negative set would also be unacceptable. 
This criterion should be employed with some caution, 
since such an imbalance may occasionally occur among 
the phases associated with the largest ]El. An example 
of this was found in the study of a dimer of hexa- 
fluorobutadiene (Karle, Karle, Owen & Hoard, 1965). 

(iv) Some assignments of signs for the symbols may 
lead to a relatively large number of inconsistencies 
among the contributors to (4.1). Those sets of signs 
associated with fewer inconsistencies would be con- 
sidered the more probably correct ones and E maps 
for them would be computed first. It should be noted, 
however, that often the most internally consistent set 
is not the correct one, e.g. the study of jamine (Katie 
& Karle, 1964b). 

(v) Known special features of particular structures 
can be used to indicate the values of certain phases. 
Heavy atoms or isomorphous substitutions can pro- 
vide the basis of elegant phase determination proce- 
dures which are complete in themselves. However, in 
the present context an example would be the case of 
jamine, wherein the large IE020l and the large IE0021 
would need to be associated with negative signs in 
order to keep the large molecule from getting too close 
to centers of symmetry. 

6. Using the E h whose signs have been determined, 
Fourier maps are calculated with these E h as coeffici- 
ents. Generally, the three-dimensional E maps will be 
computed with approximately ten to fifteen of the lar- 
gest independent IEhl per atom in the asymmetric unit. 
In maps which are incorrect, only parts of structures 
may appear, and, in general, the peaks do not satisfy 
distance criteria properly or make good chemical sense. 

The procedure described here can reveal the exis- 
tence of homometric structures if the calculation of E 
maps is not discontinued as soon as a crystallographic- 
ally suitable structure has been found, but rather all 
possible E maps are computed. 

II. Noncentrosymmetric crystals 
(a) Preparation of normalized structure factor 
magnitudes 

The discussion in l(a) applies equally well for non- 
centrosymmetric crystals. 

(b) Listings of the data 
Listings are made as in I(b) for application initially 

with formula (4.3). tc is also listed along with each pair, 
k and h - k ,  for use with the probability formula (3.19) 
or the variance (3.33). Again, ~f~ has been replaced 
by Eh. 

(c) Specification of origin and enantiomorph and 
the assignment of unknown symbols 

The method for specifying origin and enantiomorph 
for a given noncentrosymmetric space group has been 
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determined (Hauptman & Karle, 1956, Karle & Haupt- 
man, 1961). In making the phase assignments, the lar- 
gest suitable IEhl should be used. The choice will be 
partly determined by the extent to which a particular h 
enters into the combinations required by formula (4.3), 
as shown by a X2 listing. 

The enantiomorph is determined by the assignment 
of a sign to a particular linear combination of phases 
which satisfies the definition of an invariant (or semin- 
variant, when appropriate). The magnitude of this 
linear combination of phases must not be 0 or n. For 
practical purposes it should not be near 0 or n. In 
space group P1, for example, all invariants are of the 
form ~hl-J~h2-~-(jgh3 where h l+h2+h3- -0 ;  and in space 
group P222, a phase of type ~oggy (g even) is an in- 
variant. Only the signs of such phases or combina- 
tions of phases may be specified in order to determine 
the enantiomorph. In some other space groups, e.g. 
P21212~, it is possible to choose an enantiomorph by 
specifying the value of a phase whose magnitude is 
known to be n/2. A discussion of this point may be 
found elsewhere (Karle & Hauptman, 1956, p. 645 ft.). 
If an unknown symbol or symbols are connected with 
the assignment of the enantiomorph, this assignment 
implies that the range of values to be considered for the 
symbols is restricted, because the sign of the linear 
combination is known. If the enantiomorph assignment 
is ignored, the range of values for the appropriate sym- 
bols is increased, giving two final solutions, the phase 
values appropriate to each of the enantiomorphs [of. 
structure determination of panamine (Karle & Karle, 
1966)]. 

After the specifications which determine the origin 
and enantiomorph have been made, some additional 
symbols are assigned to other large [Eh[ one at a time 
as needed, whose h enter into many combinations as 
required by formula (4.3). This formula may now be 
employed to determine the phases of the remaining 
large ]Eh] in terms of the phase specifications and un- 
known symbols. 

(d) Phase determination 
We describe here a procedure for phase determina- 

tion, which involves hand computation employing 
(4.3) in the initial stages, followed by (4.4) or (4.5) 
computed by machine. The machine computation ex- 
tends the number of phases and reiterates the initial 
determination with more accurate formulas. 

The following steps have generally been followed: 
1. A listing is made of five to ten of the largest [E[ 

in the various subgroups, as in the case for centrosym- 
metric crystals. 

2. Phases are assigned which specify the origin and 
in addition one unknown symbol is assigned. The 
chosen reflections should form many combinations, as 
required by (4.3). Throughout the phase determination, 
the phases q~u are kept within the range - n  < ~0 h_< n. 

3. Equation (4.3) is employed to define as many 
phases of the largest [Eh[ as possible in terms of the 

specified ones and others that have been newly deter- 
mined. Fig. 2 should be employed to evaluate the vari- 
ance, V. A working rule is V<_0.5 for accepting a 
phase indication. When all three phases are real and 
pure imaginary, (4.2) can be applied as for centrosym- 
metric crystals. It should be noted in applying (4.3) 
that for each contributor sum ~Ok+q~_ k, expressed in 
terms of symbols, there is generally an ambiguity con- 
cerning whether zero, + 2 n  or - 2 n  should be added 
to this quantity. The ambiguity arises from the fact 
that the contributors to the average are expected, from 
the previously outlined probability considerations, to 
cluster about the average value. Thus all contributors 
should be adjusted by 0, +2n  or - 2 n  so that their 
deviation from the average is a minimum. Since the 
correction for a particular contributing sum is generally 
unknown, there may be a difficulty in averaging the 
contributions of two or more such sums in formula 
(4.3) for a particular h. The problem is avoided in 
practice when there are many sums ~0k+~0h_ k contrib- 
uting to (4.3) which lead to the same combination of 
symbols. In that case, the average of the contributors 
is the same as that of a single contributor. If there are 
some minor exceptions, these are ignored in order to 
progress with the determination. Other special circum- 
stances occur which help to circumvent the problem. 
For example, if the contributor sums ¢pk+~0~_k for a 
particular h are expressible in terms of different sym- 
bols, a relationship may be indicated among the sym- 
bols. If the same relationship recurs several times, for 
various choices of h, it may be accepted, thus simpli- 
fying the averaging process. In those cases for which 
the ambiguity cannot be resolved or avoided, the aver- 
age in (4.3) cannot be taken and the particular ~0 h 
must remain unevaluated until numerical values for 
the unknown symbols are finally introduced. If desired, 
this ~0 h can be carried through the determination by 
giving it an additional unknown symbol whose value 
is defined in terms of others. 

4. Another unknown symbol is assigned and the de- 
termination is continued with the restricted list of 
step 1. 

5. The next five to ten largest ]E] in each subgroup 
are now considered and eventually full use is made of 
the listing of all the combinations of k and h - k  for 
a given h. 

6. Additional unknown symbols are specified, if re- 
quired, in order to determine the phases of the majority 
of the larger [Eh[ in terms of the specified phases and 
unknown symbols. After about fifty phases have been 
so determined, it has been found useful to list by 
machine, and in terms of the symbols, all the combina- 
tions of k and h - k  that this restricted set can contrib- 
ute to a given h. This is a feature of the Xz listing 
program mentioned above in I(b). Further phase deter- 
mination by hand is thus facilitated and, of course, the 
calculation may be repeated and further extended as 
more phases are obtained. In this way a set of one to 
two hundred phases may be obtained. This set may be 
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further extended by the use of (4.4) and (4.5) after 
specific values are introduced for the unknown sym- 
bols. 

The number  of unknown symbols to be dealt with 
may be limited in the following ways. 

(i) Often, as the phase determinat ion employing 
(4.3) proceeds, certain of the unknown symbols are 
found to be definable in terms of others. Relations 
should generally be accepted only at the end of the 
procedure. 

(ii) Phase determining formulas which define phases 
in terms of the structure factor magnitudes may be 
employed, e.g. the L'~ formula  for noncentrosymmetr ic  
crystals (Karle  & Hauptman,  1956) o r  B3, 0 and I3,0 
(Karle & Hauptman,  1958). The latter two formulas 
are in general not sufficiently accurate to determine 
the values for the phases of complex structure factors 
but  can often be used to distinguish between the special 
values 0 or re, or between + ;z/2 and -re/2. 

The remaining unknown symbols, if any, are now 
assigned a succession of values covering the range from 
- n  to +re and differing by about 45 °. If a symbol is 
associated with the specification of an enant iomorph,  
it would be limited to half  this range. Each combina-  
tion of possible numerical  values assigned to the un- 
known symbols produces, from the set of  one to two 
hundred phases, defined in terms of these symbols, a 
numerical  set which may be extended by use of (4.4) 
and (4.5). 

In the application of the 'weighted sum formula '  
(4.4) to the sets of  numerical  phases, for the purpose 
of extending them previous to the calculation of Fou- 
rier maps, the ambiguity discussed in step 3 above must  
be taken into account. Owing to the fact that the phases 
have numerical  values, a fairly simple method has been 
devised for resolving this problem, which appears to 
be sufficiently accurate in application. In this method 
two calculations are made with (4.4). For the first cal- 
culation all the sums, ~0k+ ~0h--k, contributing to a par- 
t icular h are placed in the range -7~ < ~0 k + CPh-k --< 7~, 
and the value is computed for cph. In the second calcu- 
lation all the sums, ~0k+ ~0h_ k, are placed in the range 
0 < ~0 k + ~0 h_k < 2n and a second value is computed for 
~0a. The deviation of each set of  contributors from their 
corresponding average is given in terms of the variance 
of the contributors.  The average value chosen for cph 
is that  associated with the smaller variance. If  both 
variances are too large, neither value of ~0 h is acceptable. 
I f  an accepted Cph Occurs in the range zc < ~0h_< 2n, we 
subtract 2~z in order to return it to the s tandard range. 

A test calculation of (4.3) and (4.4) has been made 
using the known structure of L-arginine dihydrate 
(Karle & Karle, 1964a). Eighty-two reflections with 
IEhl > 1"5 and hkl¢O were used as a basic deck for this 
computat ion in space group P2~212~. The results for 
twenty of these reflections are shown in Table 1. The 
phases ~0 h in radians were computed from the known 
structure. The phases (tpa)0 and (~0~),~ were computed 
from (4.3), having n terms in the average, where the 

individual terms composed of sums of phases, ~0 k + CPh_k, 
were held in the ranges from - rc  to + rc and 0 to 2r~, 
respectively. The phases (~0h)0, w and (~0h),~,w were simi- 
larly calculated from the weighted formula (4.4). The 
spread of the contributors in (4.3) and (4.4) was eval- 
uated by computing their variances, V0, V,~, Vo.,,, 
V,~,w, about  the corresponding average values. It is 
seen that there is little difference between the values 
computed from (4.3) and (4.4) in the range of IEI 
values above 1.5. 

The variances can be employed as a basis for choos- 
ing between the two alternative calculations of the 
average, one with contributing terms in the range - rc  
to zc and the other in the range 0 to 2re. Obviously the 
smaller  of  the two variances V0 or V,~ implies greater 
clustering of the contributors and suggests which aver- 
age to choose. As pointed out above, this resolves the 
2re ambiguity associated with each term in the average. 
If, for example, we examine the values for the phases 
computed from (4.3) or (4.4), we would choose (~0h)0 
or (~0h)o. w on the basis of the variances for the phase 
of (4,11,1), but (cph), or (~0h)~. w for the phase of 
(3,1,10). 

Restricting our attention to the calculation from 
(4.4), the average deviation from the known ~0 h of the 
twenty phases computed in Table 1 and chosen accord- 
ing to smallest variance is 0.33 radian. If  a rejection 
criterion based on variance were introduced to the 
effect that at least one of V0. w and V,~,w should be 
less than 1.4, then the phases computed for 1,12,6, 
6,2r8, 4r12,5 and 3,2,16 would not be accepted. This 
would change the average deviation of the sixteen 
remaining computed phases from the known values to 
0.23 radian. The addit ion of fifty-five one- and two- 

Table 1. Test calculation of  (4.3) and (4.4) using the 
known structure of  L-arginine dihydrate 

A basic deck of eighty two reflections with IEhl > 1-5 and hklv~O 
was used. Known phases eh are compared to those computed 
with (4.3), (~Oh)o and (~0h),~, and with (4-4), (~0h)0,co and (~0h)n,co, 
where the contributors are first restricted to the range - n < ~0k 
+ ~0h-k _< ~ and then to the range 0 <_ ~0k + ~0h-k < 2~z respectively, 
in order to approximate optimum clustering in at least one of the 
ranges. A measure of the clustering, the corresponding varian- 
ces about the average value, V (in square radians), are also in- 
cluded. The total number of terms contributing to an average 
is given in the last column. 
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4 11 I 1.731 0.53: 0.37i1.18 '  1.77 ',1.88] 0.41 11.16 1.64 1.59] 9 i  
3 1 10 1.63 2.44 1.94 1.66 2.39 
3 11 4 2 .08 2 .18 1.83 1 . 6 8 '  2 .46 
3 11 10 1.75 2.37 1.18 2.14 2.75 
2 1 1 4  1.68 2.93 1.06 2.12 2.63 

' 1 2 3 1.77 0 .39 0 .16 0.68 1.88 
1 2 16 1.58 3.11 0.73 2.46 2.82 
1 2 18 1.53 -0 .92  - 0 . 3 0  1.18 - 2 . 3 9  
1 12 1 1.82 -1 .42  - 0 . 8 3  0.89 - 2 . 0 8  
1 12 2 1.73 0.21 -0 .02  0.48 -2 .87  
1 12 4 1.92 2.83 1.02 2.57 2.96 
1 12 6 1.76 - 0 . 1 0  0 .69 1.26 2.26 
6 2 8 1.83 0.22 0 .53 1.41 1.43 
5 2 12 1.52 -0 .07  0.07 1.11 -3 .07  
4 2 16 1.69 0 .30  0.27 0.74 1.84 
4 12 5 1.69 - 1 . 1 6  0 .00 1.99 3.14 
3 2 4 1.57 0.22 0.21 0.62 -2 .93  
3 2 9 1,67 2.64 2 .29 1.34 2.92 
3 2 10 1.64 - 0 . 1 8  -0 .05  0.73 - 2 . 5 6  
3 2 16 1.53 - 0 . 0 6  0 .16  1.68 - 1 . 9 6  

- . . . . . . . . . .  t 

0.91 , 2 .03 
! 0 .53 ', 1.87 1 

1.34 1.08 
1.33 ~ 1.14 
2.32 0 .17 
0 .87 i 0 .53 
2.27 - 0 . 3 4  
2.08 - 0 . 8 6  
2.95 - 0 . 0 4  
0 .75 1.05 
2 .40 0 .73 
1.64 0 .46 
2.43 0 .04 
2.52 0.24 
2.01 0 .00  
2.71 i 0 .16 
1.07 ' 2 .35 
2.71 - 0 . 0 7  
1.77 i 0 .14 

. .  

1.59 2 .40  0 .94 ' 14 
1.68 2 .45 0 .67 10 
2 .20  2 .65 1.15 ; 8 
2 .10 2 .62 1.35 I 12 , 
0 .68 1 . 8 9  2 . 4 3 : 2 2  ! 
2.57 2 .86 1.08 ! 12 i 
1.17 - 2 . 2 6  2 .50 9 1 
0 .95 -2 .08  2 .34 5 " 
0 .46 - 2 . 7 5  3 .26 i i  
2 .54 2.95 0 .82 13 
1.42 2.43 2.73 12 ' 
1 .60 1.63 2 .10  7 
1.07 - 2 . 9 2  2 .80 6 
0 .75 1.93 2 .72 4 : 
1 .85 3 .14 2.36 6 ] 
0.61 , - 2 . 7 5  3.02 1 2 '  
1.44 : 2 .94 l . l O  l O :  
0 . 7 0 '  - 2 . 5 2  2.88 , 1 0 ;  

1.51i-1.98 1 9LL 2 
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dimensional data to the original eighty-two lowered 
this average deviation slightly to 0.21 radian. In this 
case all phases except that for the 4,12,5 would be ac- 
cepted on the basis of the variance criterion and the 
three additionally accepted phases would have an aver- 
age deviation of 0.46 radian. Evidently, a rejection 
criterion could also be based on the number of con- 
tributors to the average in (4.3) and (4.4). 

The terms contributing to (4.3) and (4.4) are asso- 
ciated with the products [EhEkEh_k[ which do not vary 
greatly from an average value of about 5.5. This leads 
to an average value of approximately 1.5 for ,c, and 
assuming q--9 contributors and ~,-,q*(K>, we find 
~,-~4.5. As Fig.2 shows, a value of :z=4.5 gives 0.25 for 
the variance. The experimental variances in Table 1 may 
be compared with this value. On the basis of the theo- 
retical estimate of 0.25, the cut-off value of 1.4 men- 
tioned above is reasonable, since it corresponds to about 
2.4 standard deviations. It should be recalled also 
that the clustering of the contributors to (4.3) and (4.4) 
was only approximately obtained in the calculation. 

It may be preferable to use the tangent formula (4.5) 
with the sets of numerical phases in order to extend 
them. This formula is valid for the entire range of 
values for the [Eh[. Since the signs of sin tph and cos {Oh 
are obtained in the calculation, there is no ambiguity 
in obtaining tPh from tan {ah. If we calculate (3.9) and 
(3.10), employing ]El instead of I~l over a restricted 
range kr for a set of h, we will obtain unscaled values 
for IEhl cos ~0h and IEhl sin {Oh" If we take the sum of 
the squares of these quantities and rescale them by 
matching their average to the average of the corres- 
ponding set of observed IEal2obs, we will obtain a set 
of calculated [Eal2eale based on the particular set of 
phases under consideration. An R index, defined by 

S IIEalob~--IEnlea,el 
R =  k, (5.2) 

~rlEalobs 
kr 

may now be computed. We thus have the following 
rejection criteria in the application of the tangent for- 
mula. If a structure factor magnitude Ifaleale is cal- 
culated to be quite small, e.g. < 0.3--0.5, or if a phase 
changes value greatly on successive reiterations, the 
phase is rejected. If some assignments of value to the 
unknown symbols lead to R values in (5.2) which are 
considerably greater than those for other assignments, 
they are considered to have much less probability of 
being correct and are not carried through unless those 
assignments with lower R values do not lead to an 
acceptable structure. 

In summary, formulas (4.4) and (4.5) serve many 
purposes. They are used to extend the number of 
phases initially determined by hand. By reiteration 
they can effect a convergence of the values of the phases 
to a more accurate set of values. These formulas also 
facilitate the application of criteria for the rejection 
of poorly determined phases. If there are a great many 
rejections for a particular numerical specification of 

the unknown symbols, the values given the symbols 
should be suspect. The calculations involved are too 
extensive to be done by hand. We have been using a 
program for computing (4.4) and (4.5) including the 
rejection criteria which is written in FORTRAN and 
has been prepared by P .Gum and S.Brenner of this 
laboratory. In the application of this calculation, about 
twenty to thirty phases per atom in the asymmetric 
unit have been computed. In our experience to date, 
phases are obtained from these formulas with an aver- 
age deviation of about 20 ° to 25 ° . 

7. From the alternative set of phases, determined in 
II(d) 6 from the various assignments of values for the 
unknown symbols, E maps are computed which are 
based on the E h as Fourier coefficients. 

Generally, the three-dimensional E maps will be 
computed with the largest IEal values comprising about 
thirty per cent of the data obtained from the sphere 
of reflection from copper radiation. The criteria for a 
correct map are the same as those mentioned in I(d) 6 
for the case of centrosymmetric crystals. 
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